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Abstract

Rapid thermal processing (RTP) is a new technique for performing various wafer fabrication operations such as

annealing, oxidation and chemical vapor deposition in a single chamber. The success of the RTP depends on the precise

control of wafer temperature by adjusting wall heat ¯ux. In the present investigation, an e�cient recursive method is

developed to solve the inverse heat transfer problem of estimating the wall heat ¯ux on the wafer from the measure-

ments of wafer temperature. The present recursive method is based on the Kalman ®ltering technique and the Kar-

hunen±Lo�eve Galerkin procedure. Although the direct implementation of the Kalman ®lter on heat conduction

equation is never feasible due to the tremendous requirement of computer time and memory, a practical method of

recursive estimation is devised in the present investigation by reducing the partial di�erential equation to a minimal set

of ordinary di�erential equations by means of the Karhunen±Lo�eve Galerkin procedure. Ó 2001 Elsevier Science Ltd.

All rights reserved.

1. Introduction

Rapid thermal processing (RTP) is a new technique

for performing various wafer fabrication operations

such as annealing, oxidation and chemical vapor depo-

sition in a single chamber [1]. In the manufacturing of

integrated circuits, it is necessary to keep the tempera-

ture low to minimize the redistribution of dopants. But

some processes, such as implant annealing, are not as

e�ective at low temperature. Certain type of implant

damage cannot be annealed out unless high tempera-

tures are achieved. One possible avenue to minimizing

di�usion during annealing at high temperature is to re-

duce the process time at high temperature. If RTP is

employed, the dopant redistribution can be minimized

during annealing by allowing brief time at high tem-

perature [2]. One of the main technological hurdles that

RTP must overcome is that of heating the wafers uni-

formly to prevent wafer warpage induced by the thermal

stress [3]. Recent approach adopted in RTP design is the

employment of multiple concentric circular rings of

lamps that can be controlled independently to adjust the

heat ¯ux over the wafer to maintain a reasonable uni-

form temperature over a range of operating conditions

[1]. Because temperature uniformity of the wafer de-

pends critically on the distribution of wall heat ¯ux, a

real-time scheme of determining the wall heat ¯ux dis-

tribution from the relatively easier measurements of

wafer temperature has an important role in the appro-

priate operation of the RTP systems. With such a

scheme available, one can easily manipulate the multi-

lamp system to adjust the wall heat ¯ux of the wafer

such that the spatial temperature uniformity is achieved

while prespeci®ed trajectories of the wafer temperature

are tracked.

In the present paper, we suggest an e�cient method

of determining wall heat ¯ux from the measurements of

wafer temperature. It is a typical inverse heat transfer

problem. The solution of the inverse problem is not

straightforward due to their ill-posedness; small pertur-

bations in the observed functions may result into large

changes in the corresponding solutions. The ill-posed-

ness requires special numerical techniques to stabilize
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the results of calculations. Commonly adopted tech-

niques for this purpose are the least-square methods

modi®ed by the addition of regularization terms that

impose additional restrictions on admissible solutions [4]

and the conjugate gradient method where the regular-

ization is inherently built in the iterative procedure [5].

These algorithms are iterative ones and therefore require

repeated computation of governing equations. Also they

require a complete data base before computation begins

and thus are non-recursive. However, if the scheme is to

be employed in the RTP systems, it must be a recursive

one where initial a priori estimation is continually up-

dated based on the current measurements. In the present

investigation, we employ the Kalman ®ltering technique

that is a typical recursive estimation method consisting

of repeatedly updating the estimates and a covariance

matrix to indicate the reliability of the estimates [6±8].

But the direct implementation of the Kalman ®ltering

technique for the solution of multi-dimensional inverse

heat conduction problems is never practical due to the

tremendous requirement of computer time and memory.

For a two-dimensional heat conduction, the covariance

equation is a four-dimensional unsteady partial di�er-

ential equation. It becomes a six-dimensional partial

di�erential equation if one considers three-dimensional

heat conduction. Therefore, one of the most important

prerequisites for the successful implementation of a

Kalman ®lter for the purpose of real-time solution of

inverse heat conduction problems is the development of

a reliable reduced order model that is not mathemati-

cally complicated but still predicts the system behavior

with accuracy. An appropriate technique for this pur-

pose is the Karhunen±Lo�eve Galerkin procedure [9,10]

which is a Galerkin method employing the empirical

eigenfunctions of the Karhunen±Lo�eve decomposition

as basis functions.

For a while, the Karhunen±Lo�eve decomposition

had been used as a rational technique enabling a sto-

chastic ®eld to be represented with a minimum degree

of freedom [11,12]. If the Karhunen±Lo�eve decompo-

sition is applied to a given stochastic ®eld, we get a set

of empirical eigenfunctions. The same stochastic ®eld

can be reproduced with a minimum degree of freedom

if these empirical eigenfunctions are employed [11,12].

But recent works [9,10] have extended the applicability

of the Karhunen±Lo�eve decomposition to the analysis

Nomenclature

A Jacobian matrix de®ned in Eqs. (30)±(32)

ai spectral coe�cient premultiplying the ith
empirical eigenfunction

Bnj matrix de®ned in Eq. (25)

C matrix de®ned in Eq. (34)

Fiÿj view factor between the ith and the jth
zones

Hji matrix de®ned in Eq. (20)

Ho radiative ¯ux from lamps to the upper

surface of the wafer

hw; h0w; h
00
w heat transfer coe�cients

I identity matrix

K�x; x0� two-point correlation function of the

Karhunen±Lo�eve decomposition

M number of temporal shape functions in

the discretization of heat ¯ux

Mj vector de®ned in Eq. (18)

N number of spatial shape functions in the

discretization of heat ¯ux

Nij matrix de®ned in Eq. (21)

NT number of empirical eigenfunctions em-

ployed

P error covariance matrix

Pij matrix de®ned in Eq. (19)

Pk total radiation from the kth lamp

Q measurement error covariance matrix

q�r; t� heat ¯ux at the wafer wall

Qi radiosity

R radius of the wafer

Rÿ1 model error covariance matrix

T temperature ®eld

W view factor matrix between lamps and

upper surface of the wafer

y measurement vector (cf. Eq. (33))

Z thickness of the wafer

Greek symbols

amn coe�cient in the discretization of heat

¯ux (Eq. (15))

dij Kronecker delta

�i emissivity

g�t� Gaussian white noise in the measurement

h deviation temperature (Eq. (1))

ki the ith eigenvalue

n�t� Gaussian white noise in the model

qi re¯ectivity

r Stefan±Boltzmann constant

/i the ith empirical eigenfunction

u�n�k the kth empirical eigenfunction for the

nth set of snapshots

Wm�t� temporal shape function

Wn�r� spatial shape function

X system domain

Superscripts

� measurement

T transpose
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of non-stationary, non-homogeneous deterministic as

well as stochastic ®elds to allow the derivation of rig-

orous reduced order models that simulate the given

systems almost exactly. This extension of the original

Karhunen±Lo�eve decomposition is called the Karhun-

en±Lo�eve Galerkin procedure [9,10]. Through the

Karhunen±Lo�eve Galerkin procedure, one can a priori

limit the function space to the smallest linear subspace

that is su�cient to describe the observed phenomena

and consequently reduce the heat conduction equation

to a minimal set of ordinary di�erential equations.

When the Kalman ®ltering technique is applied to the

resulting low-dimensional dynamic model, it is found

to solve the inverse heat transfer problem recursively

with a meager requirement of computer time and

memory.

2. Thermal modeling of the RTP system

One of the most important problems with the RTP

is the maintenance of thermal uniformity in the wafer.

Various RTP systems have been developed that use

various chamber and heating designs to improve the

thermal uniformity in RTP [2,13]. In the present in-

vestigation we consider a hypothetical axisymmetric

RTP system with independently controlled concentric

circular rings of lamps as depicted in Fig. 1. This is in

fact a simpli®cation of the system of Moslehi et al. [13].

We adopt this simpli®ed system to facilitate a clearer

presentation of the real-time recursive algorithm which

solves the inverse heat transfer problem of estimating

the heat ¯ux distribution on the wafer from the mea-

surements of its temperature. As depicted in Fig. 1, the

upper surface of the wafer is heated by radiation from

the lamps which are partitioned into several circular

concentric zones. The radiation intensity of the lamps

in each zone is controlled independently so that the

edge of the wafer, where the heat loss is greater, may

receive excess radiation. The wafer and chamber sur-

faces are modeled as gray and di�use, so radiative heat

transfer can be computed using view factors [14,15]. In

addition to the dominant radiative heat transfer from

the lamps to the upper surface of the wafer, there are

additional radiative heat exchanges between the wafer

surfaces (upper, lower and edge) and chamber walls.

Thus, the radiative heat transfer from the lamps can

indirectly in¯uence the heat ¯ux at the lower surface

and the edge of the wafer. These radiative heat ex-

changes are obtained by solving the enclosure problem

to be described below. Our strategy in the thermal

modeling in the RTP system is to separate the radiative

heat exchange governed by the enclosure problem from

the heat conduction within the wafer. Then, once the

heat ¯ux distribution on the surface of the wafer is

estimated from the wafer temperature measurements,

the lamp power distribution is trivially determined by

solving the enclosure problem. The sensor locations for

the measurement of wafer temperature are indicated in

Fig. 1(b) with small circles. In our model of RTP, only

the dominant radiative transfer from the lamps to the

upper surface of the wafer is considered explicitly, and

the minor radiative exchanges between the wafer sur-

faces (lower and edge) and the chamber walls are taken

care of by the e�ective heat transfer coe�cient. In doing

so, one can reduce the condition number of the matrix

in the enclosure problem and, as a result, the inverse

determination of the lamp power shall become more

robust.

De®ning the deviation temperature h as the di�erence

between the actual temperature T 0 and the ambient

temperature in the chamber Ta as

h � T 0 ÿ Ta; �1�

the governing equation and relevant boundary con-

ditions for the heat conduction in the wafer under the

assumption of axisymmetry are

qCp

oh
ot
� k

1

r
o
or

r
oh
or

�
� o2h

oz2

�
; �2�

t � 0; h � Ti ÿ Ta; �3�

r � 0;
oh
or
� 0; �4�

r � R; k
oh
or
� ÿheh; �5�

z � 0; k
oh
oz
� h0wh; �6�

Fig. 1. The system.
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z � Z; k
oh
oz
� q�r; t� ÿ h00wh; �7�

where q is the density of the wafer, Cp the heat ca-

pacity, k the thermal conductivity, R the radius of the

wafer, Z the thickness of the wafer, Ti the initial tem-

perature, he the e�ective heat transfer coe�cient at the

edge, h0w the e�ective heat transfer coe�cient at the

lower surface of the wafer, h00w the convective heat

transfer coe�cient at the upper surface of the wafer,

and ®nally q�r; t� is the net radiative heat ¯ux to the

upper surface of the wafer. Since the wafer is thin en-

ough that the axial temperature gradient can be ne-

glected, the Eq. (2) may be integrated vertically to yield

the following one-dimensional unsteady heat conduc-

tion equation governing the vertically averaged tem-

perature ®eld:

qCp

oT
ot
� k

r
o
or

r
oT
or

� �
� q�r; t�

Z
ÿ 2hwT

Z
; �8�

where hw � �h0w � h00w�=2 and T is the vertical average

of h.

The relevant initial and boundary conditions for

Eq. (8) are Eq. (3)±(5). The boundary conditions Eqs. (6)

and (7) are incorporated into the second and the third

terms in the right hand side of Eq. (8). As shown in

Fig. 1(b), the domain of the system is a thin disk of

radius R � 7:5� 10ÿ2 m and the thickness Z � 10ÿ3 m

with the physical properties of q � 2330 kg=m3,

Cp � 703 J=kg K, k � 153 W/m K, and he �
22:8 W=m2 K. The heat transfer coe�cient hw is

assumed to vary radially according to the following

empirical formula [16]:

hw � hi � �ho ÿ hi� r
R

� �4

; �9�

where hi � 28:4 W=m2 K and ho � 45:6 W=m2 K. Ac-

cording to Eq. (9), the convective and radiative cooling

from the wafer is larger near the edge than at the

center.

By solving the inverse heat conduction problem, the

heat ¯ux q�r; t� in Eq. (7) or Eq. (8) is determined from

the temperature measurements at selected locations

at the upper surface of the wafer. Once q�r; t� is secured,

the temperature distribution in the wafer is easily ob-

tained by solving Eq. (8). Now, we are going to explain

how to pose an enclosure problem that exploits q�r; t�
and the wafer temperature to yield the distribution of

lamp powers that have caused the observed temperature

distribution on the wafer surface.

In the enclosure problem [14,15], the wafer surfaces

and the chamber walls are divided into a ®nite num-

ber of zones and the radiative exchanges among these

zones and the lamps are determined by solving a set

of simultaneous linear algebraic equations. It is as-

sumed that each zone has uniform temperature, heat

¯ux, radiosity and radiative properties which are also

isotropic and independent of frequency. The surfaces

are also assumed to be opaque, di�use emitters and

di�use re¯ectors. Then the enclosure problem may be

posed as follows. Denoting the zones in the upper

surface of the wafer with the index, i � 1; 2; . . . ;M , the

remaining zones including the lower surface of

the wafer and chamber wall with the index,

i � M � 1;M � 2; . . . ;N and the lamp zones with

i � N � 1;N � 2; . . . ;N � L, we have the following set

of equations:

For i � 1; 2; . . . ;M (upper surface of the wafer)

XN

j�1

�dij ÿ qiFiÿj�Qj ÿ qiHoi � �irT 4
i ; �10�

XN

j�1

�dij ÿ Fiÿj�Qj ÿ Hoi � qi: �11�

For i � M � 1;M � 2; . . . ;N (the edge of the wafer, the

lower surface of the wafer and the chamber wall)

XN

j�1

�dij ÿ qiFiÿj�Qj � �irT 4
i : �12�

For each zone i, Qi is the radiosity, �i the emissivity, qi

the re¯ectivity, Ti the temperature, Fiÿj the view factor

between the ith zone and the jth zone, qi the net outward

heat ¯ux from the ith zone, r the Stefan±Boltzmann

constant and Hoi is the radiative ¯ux from lamps to the

ith zone in the upper surface of the wafer. The radiative

¯ux from the lamps to the upper surface of the wafer is

represented by

Hoi �
XL

k�1

WikPk ; �13�

where Pk is the total radiation from the kth lamp and Wik

is the view factor from the kth lamp to the ith zone in the

upper surface of the wafer. Since the temperature ®eld in

the wafer and the heat ¯ux on the upper surface of the

wafer have been obtained by solving the inverse heat

conduction problem and the temperature of chamber

walls is given a priori, we have thus secured

qi �i � 1; 2; . . . ;M� and Ti �i � 1; 2; . . . ;N�. The set of

Eqs. (10)±(12) is composed of N �M linear equations

with N �M unknowns, i.e., Qi �i � 1; 2; . . . ;N� and

Hoi �i � 1; 2; . . . ;M�. The inversion of the matrix to

obtain Hoi is very cheap, since the coe�cients of the

matrix are constants; we only have to invert it once at

the beginning and store the inverse which is to be used

repeatedly later. Once Hoi �i � 1; 2; . . . ;M� is known, the

strengths of the lamps Pk �k � 1; 2; . . . ; L� that yield the
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observed temperature are obtained by solving Eq. (13) in

the least-squares sense as follows:

PT � �WTW�ÿ1
WTHo; �14�

where

PT � �P1; P2; . . . ; PL�;W � �Wik �
and

HT
o � �Ho1;Ho2; . . . ;HoM �:

The above explanations may be summarized as follows.

From the temperature measurements at certain loca-

tions on the wafer, the heat ¯ux distribution on the

wafer is estimated by solving the inverse heat conduc-

tion problem. Using the resulting heat ¯ux, the enclo-

sure problem easily determines the distribution of lamp

power, which gives us a clue to the readjustment of

lamp powers so that the temperature gradient in the

wafer be smeared out while tracking prespeci®ed tem-

poral trajectories of the wafer temperature. Since the

radiative exchanges determined by the enclosure prob-

lem can be treated separately without signi®cant com-

putational burden as explained above, we shall

concentrate on the recursive solution of the inverse heat

conduction problem that is one of the most important

ingredients for the successful operation of the RTP

systems.

3. The Karhunen±Love Galerkin procedure [9,10]

The Karhunen±Lo�eve Galerkin procedure is a

Galerkin method that employs the empirical eigenfunc-

tions of the Karhunen±Lo�eve decomposition [11] as trial

functions. The Karhunen±Lo�eve Galerkin procedure,

which had been developed in [9,10], reduces the original

partial di�erential equation to a low-dimensional dy-

namic model with a minimum degree of freedom. This

technique is shown to solve inverse heat conduction

problems and inverse natural convection problems ef-

®ciently [17,18]. Details of the Karhunen±Lo�eve Galer-

kin procedure are well documented in the references

cited [9,10,17,18].

The set of empirical eigenfunctions to be employed in

the Karhunen±Lo�eve Galerkin procedure must span the

solution space of the heat conduction equation for

various trajectories of the boundary heat ¯ux q�r; t�
under consideration. According to the Schmidt±Hilbert

theory, the empirical eigenfunctions can be expressed

linearly in terms of snapshots [9,10,19]. Therefore, we

have to prepare an ensemble of snapshots fTn�r�g that

encompasses the admissible solution space of the heat

conduction equation for the above trajectories of the

boundary heat ¯ux q�r; t�.
Thus, the snapshots of the system have been obtained

in the following way. As the ®rst step, we transform the

continuous heat ¯ux q�r; t� into discrete variables as

follows:

Fig. 2. De®nition of shape functions. (a) Temporal shape functions. (b) Spatial shape functions.
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q�r; t� �
XM

m�1

XN

n�1

amnWm�t�Wn�r�; �15�

where Wm�t� is the mth temporal shape function em-

ployed to discretize the time variable, Wn�r� the nth

spatial shape function employed to discretize the space

variable r, M the number of temporal shape functions

and N is the number of spatial shape functions employed.

In the present work, we adopt M � 11, and N � 11. Fig.

2 depicts these shape functions. Next, we solve the sys-

tem, Eq. (8), with q�r; t� � Wn�r� and record 400 transient

temperature ®elds at an appropriate time interval until a

steady state is reached. These serve as the snapshots. The

Karhunen±Lo�eve decomposition is then applied to this

set of snapshots to yield empirical eigenfunctions fu�n�k g,
where superscript n designates the fact that these em-

pirical eigenfunctions are obtained from the system with

q�x; t� � Wn�x�. We repeat the above procedure for

n � 1; 2; . . . ;N to obtain N sets of empirical eigenfunc-

tions, i.e, fu�1�k g, fu�2�k g, . . . ,fu�N�k g. Each set fu�n�k g
consists of 400 empirical eigenfunctions. Finally, we

choose 10 dominant eigenfunctions from each of these N
sets to make an ensemble of �10� N� snapshots. To this

set of �10� N� snapshots, we apply the Karhunen±Lo�eve

decomposition again to obtain the ®nal set of empirical

eigenfunctions f/kg to be employed in the construction

of the low-dimensional dynamic model. Fig. 3(a)±(d)

show the ®rst, second, third, and fourth empirical ei-

genfunctions with the corresponding normalized eigen-

values k1 � 0:721, k2 � 0:199, k3 � 5:331� 10ÿ2, and

k4 � 1:593� 10ÿ2, respectively. Also shown in Fig.

4(a)±(d) are some typical eigenfunctions with smaller

eigenvalues, i.e, the 22nd, the 23rd, the 24th and the 25th

eigenfunctions with the corresponding normalized

eigenvalues, k22 � 4:260 � 10ÿ10, k23 � 3:736� 10ÿ10,

k24 � 2:823� 10ÿ10, and k25 � 2:443� 10ÿ10. Figs. 3 and

4 reveal that the dominant empirical eigenfunctions

represent the large scale structures of the temperature

®eld, while the eigenfunctions with small eigenvalues

represent the small scale structures.

The next step is the derivation of the low-dimensional

dynamic model. We represent the temperature ®eld

T �r; t� as a linear combination of the empirical eigen-

functions as follows:

T �r; t� �
XNT

i�1

ai�t�/i�r�; �16�

where /i is the ith empirical eigenfunction, ai�t� the

corresponding spectral coe�cient and NT is the total

number of the empirical eigenfunctions employed in the

Karhunen±Lo�eve Galerkin procedure. Plugging Eq. (16)

into Eq. (8), applying the Galerkin principle which en-

forces the residual to be orthogonal to each of the trial

functions and exploiting the boundary conditions, we

®nd that

qCpMj
daj

dt
�
XNT

i�1

aiPij � k
XNT

i�1

aiHji ÿ 1

Z

�
Z

X
q�r; t�/j dX� 2

Z

XNT

i�1

aiNij � 0; �17�

Fig. 3. Dominant empirical eigenfunctions with large eigen-

values. (a) The ®rst eigenfunction �k1 � 0:721�. (b) The second

eigenfunction �k2 � 0:199�. (c) The third eigenfunction

�k3 � 5:331� 10ÿ2�. (d) The fourth eigenfunction �k4 �
1:593� 10ÿ2�.
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where

Mj �
Z

/2
j dX; �18�

Pij � 2pRZhe/i�R�/j�R�; �19�

Hji �
Z

X

o/i

or

o/j

or
dX; �20�

Nji �
Z

X
hw�r�/i/j dX; �21�

To corroborate the accuracy of the low-dimensional

model, Eq. (17) is solved for various heat ¯ux functions

q�r; t�, and the resulting temperature ®elds are compared

with those obtained by the ®nite di�erence method.

Usually the error of the low-dimensional model de-

creases as the number of empirical eigenfunctions em-

ployed increases up to the optimal number. But further

increase of number of empirical eigenfunctions beyond

the optimal number does not always improve the accu-

racy because the empirical eigenfunctions with very

small eigenvalues are contaminated with round-o� er-

rors. The optimal number of eigenfunctions for the set

(23) is found to be 25, and the resulting relative errors

are less than 10ÿ4. Thus, the low-dimensional dynamic

model adopted in the sequel is constructed by using 25

empirical eigenfunctions.

4. Recursive estimation method

In this section, we derive a practical recursive algo-

rithm that solves the inverse heat conduction problem of

estimating the unknown wall heat ¯ux of the wafer from

the measurement of wafer temperature by applying the

Kalman ®ltering technique to the low-dimensional dy-

namic model. At the beginning, the temporal domain

t 2 �0; tf� and the spatial domain r 2 �0; 1� are divided

into M and N segments, respectively, and q�r; t� is ap-

proximated using the linear temporal shape functions

Wm�t� (cf. Fig. 2(a)) and linear spatial shape functions

Wn�r� (cf. Fig. 2(b)) as given by Eq. (15). Then amn in Eq.

(15) is the value of heat ¯ux at t � tm and r � rn. For the

interval t 2 �tmÿ1; tm�, the heat ¯ux function q�r; t� may

be written as

q�r; t� �
XN

n�1

amÿ1;nWmÿ1�t�Wn�r�

�
XN

n�1

am;nWm�t�Wn�r�; �22�

where amÿ1;n �n � 1; 2; . . . ;N� have been estimated dur-

ing the previous time segment t 2 �tmÿ2; tmÿ1� and

amn �n � 1; 2; . . . ;N� are the N parameters to be esti-

mated based on the temperature measurements during

the present time segment t 2 �tmÿ1; tm�. Now, the low-

dimensional dynamic model, Eq. (17), may be rewritten

as

daj

dt
� ÿ 1

qCpMj

XNT

i�1

aiPij ÿ k
qCpMj

XNT

i�1

aiHij

� 1

qCpMj

1

Dz

XN

i�1

aNT�nWm�t�Bnj

Fig. 4. Some typical empirical eigenfunctions with small

eigenvalues. (a) The 22nd �k22 � 4:260� 10ÿ10�. (b) The 23rd

�k23 � 3:736� 10ÿ10�. (c) The 24th �k24 � 2:823� 10ÿ10�. (d)

The 25th �k25 � 2:443� 10ÿ10�.
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ÿ 1

qCpMj

2

Dz

XNT

i�1

aiNij � 1

qCpMj

1

Dz

XN

n�1

amÿ1;nWmÿ1�t�Bnj �j � 1; 2; . . . ;NT �; �23�

d

dt
aNT�n � 0 �n � 1; 2; . . . ;N�; �24�

where

Bnj �
Z

X
Wn�r�/j�r�dX �25�

and new variables aNT�n are assigned to the parameters

amn to be estimated, i.e.,

aNT�n � amn �n � 1; 2; . . . ;N�: �26�

Since amn �n � 1; 2; . . . ;N� are constants during

t 2 �tmÿ1; tm�, Eq. (24) follows. The temperature

measurements at MO locations may be represented as

follows:

T ��rm; t� �
XNT

j�1

aj�t�/j�rm� �m � 1; 2; . . . ;MO�: �27�

Eqs. (23), (24) and (27) may be summarized in the fol-

lowing standard form:

da

dt
� Aa� b� n�t�; �28�

y � Ca� g�t�; �29�

where A is a �NT � N ;NT � N� matrix with its elements

de®ned by

Aji � ÿ 1

qCpMj
Pij ÿ k

qCpMj
Hij ÿ 1

qCpMj

2

Dz
Nij

�j � 1; 2; . . . ;NT ; i � 1; 2; . . . ;NT �; �30�

Aji � 1

qCpMjDz
Wm�t�BiÿNT ;j �j � 1; 2; . . . ;NT ;

i � NT � 1;NT � 2; . . . ;NT � N�; �31�

Aji � 0 �j � NT � 1;NT � 2; . . . ;NT � N ;

i � 1; 2; . . . ;NT � N�; �32�

and

�33�

�34�
In the above equations, OI is a zero vector of length N ,

OII a zero matrix of size �MO;N�, n�t� the Gaussian

white modeling noise and g�t� is the Gaussian white

measurement noise. Using Eqs. (28) and (29), the per-

formance function for the identi®cation of q�r; t� is ex-

pressed as follows:

J � 1

2
a�0�� ÿ a0�TPÿ1

0 a�0�� ÿ a0�

� 1

2

Z tf

0

_a
h�
ÿ Aaÿ b

iT

R _a
h
ÿ Aaÿ b

i�
dt

� 1

2

Z tf

0

y�
n
ÿ Ca�TQ y� ÿ Ca�

o
dt; �35�
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where the weighting matrices Pÿ1
0 , R and Q can be

chosen to re¯ect the errors in the initial estimate, the

model and the measurement device. Employing the

standard procedure [7], we can derive the recursive

estimation equation for the heat ¯ux function q�r; t�

as follows. The performance function, Eq. (35), is

minimized using a variational method under the

constraint given by Eq. (28) to yield a two-point

boundary value problem. Applying the Riccati trans-

formation to the resulting two-point boundary value

Fig. 5. The estimated pro®les of wall heat ¯ux. (a) q�r; t� for the case A (Eq. 38). (b) q�r; t� for the case B (Eq. 39).
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problem, the following set of Kalman ®ltering equa-

tions is derived.

da

dt
� Aa� b� PCTQ y� ÿ Ca�; �36�

d

dt
P � PAT � APT � Rÿ1 ÿ PCTQCP; �37�

where P is the error covariance matrix. Because the

length of the vector a is �NT � N�, the covariance matrix

P is of the size �NT � N ;NT � N� and symmetric. Thus,

the number of equations to be solved to obtain P is

�NT � N��NT � N � 1�=2.

The procedure for the recursive estimation of q�r; t� is

as follows. At the outset we assume initial values of

ai �i � 1; 2; . . . ;NT � and aNT�n �n � 1; 2; . . . ;N�. The

initial values of Q and P are assumed to be

Q � �1:=0:0025�I and P � PinitI , where Pinit is the largest

number permissible without causing numerical di�cul-

ties. The model error covariance Rÿ1 is neglected in the

present computation. Solving Eqs. (36) and (37) during

the ®rst time segment, t 2 �t1; t2�, we obtain a2n �n �
1; 2; . . . ;N�. During the next time segment, t 2 �t2; t3�, we

solve Eqs. (36) and (37) to ®nd a3n using the results of

previous time segment as initial conditions except setting

P �NT � n;NT � n� � Pinit �n � 1; 2; . . . ;N� at t � t2. The

above procedure is repeated until the ®nal time t � tf is

reached.

5. Results

To assess the e�ciency and accuracy of the present

recursive algorithm of solving the inverse heat conduc-

Fig. 6. Estimated q�r; t� from the corrupted experimental measurements. (a) 3% relative measurement error. (b) 15% relative

measurement error.
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tion problem, we consider the following two heat ¯ux

functions imposed at the upper surface of the wafer:

�case A� q�r; t� � F �r�G�t�;
where G�t� � 1:0� 104t

and F �r� � 0:2

R
r for 06 r6 0:2R; �38�

� ÿ 0:2

R
�rÿ 0:4R� for 0:2R6 r60:4R;

� 1

0:3R
�rÿ 0:4R� for 0:4R6 r6 0:7R;

� ÿ 1

0:3R
�rÿ R� for 0:7R6 r6R;

�case B� q�r; t� � F �r�G�t�;
where G�t� � 1:0� 104t

and F �r� � 0:0 for 06 r60:2R; �39�

� sin
5p�rÿ 0:2R�

8R

� �
for 0:2R6 r6R:

Temperature measurements are taken with 31 sensors

that are evenly distributed in the radial direction. Eq. (8)

is solved with the above values of q�r; t� by using a ®nite

di�erence method and we adopt these numerical solu-

tions at the measurement locations as experimental

measurements after adding small random noises that are

Gaussian distributed. The estimation error is given by

the following equation:

Error � kqestimated ÿ qexactk2
L2

kqexactk2
L2

; �40�

where k � kL2
is the usual L2-norm. For the estimated

values of ai�t � 0� �i � 1; 2; . . . ;NT � N�, exact values

are adopted in all computations presented in this in-

vestigation.

First, we consider an idealized situation where the

measurements are not corrupted by noise. The esti-

mated q�r; t� for the two cases (Eqs. (38) and (39)) are

Fig. 7. E�ect of number of measurement points on the accuracy of estimation. (a) 11 measurement points. (b) 51 measurement points.
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shown in Figs. 5(a) and (b) with the corresponding

errors. These ®gures show that the present method

yields very accurate estimates recursively. The present

method is also computationally attractive since it re-

quires solving only �NT � N� state equation (Eq. (36))

and �NT � N� �NT � N � 1�=2 covariance equations

(Eq. (37)) without iterations, which allow a real-time

implementation of the present algorithm using a mod-

ern computer system. Next consideration is the e�ect of

measurement noises on the accuracy of estimation.

Since the measurement errors are unavoidable, a

practical algorithm must be able to yield reasonably

accurate estimates even with the corrupted experimen-

tal measurements. Fig. 6(a) and (b) show the estimated

q�r; t� when the relative measurement errors are 3%

(Fig. 6(a)) and 15% (Fig. 6(b)), respectively. The esti-

mates are still quite accurate, but it is found that the

accuracy of the estimation deteriorates as the mea-

surement noise increases if comparing these results with

the estimate obtained from the exact temperature

measurements (Fig. 5(a)). Now, we consider the e�ect

of number of measurement points on the accuracy of

the estimation. The default number of measurement

points is 31 that are distributed evenly in the radial

direction (cf. Fig. 1(b)). We employ two di�erent sets of

measurement locations; one set consists of 11 sensors

and the other set 51 sensors distributed evenly in the

radial direction. Fig. 7(a) shows the estimated q�r; t�
when employing 11 sensors and Fig. 7(b) is the corre-

sponding result obtained with 51 sensors. Comparing

these results with the default case (Fig. 5(a)), it is re-

vealed that the accuracy of the estimation improves

with the number of sensors, but the increase of sensor

number beyond 31 does not improve the accuracy of

the estimation.

6. Conclusion

In RTP of semiconductor wafer, precise control of

wafer temperature is required throughout the process

cycle to minimize dopant redistribution as well as

wafer warpage. The spatial uniformity of temperature

necessary during heat-up or cool-down of the wafer is

ensured by an appropriate adjustment of lamp powers.

Since the lamp power distribution is related with the

heat ¯ux on the wafer surface by the enclosure

problem, it is important to devise a method of de-

termining the wall heat ¯ux on the wafer from the

temperature measurements at certain locations on the

wafer surface in real-time. In the present investigation,

a practical recursive algorithm is devised to solve this

inverse heat conduction problem by exploiting the

Karhunen±Lo�eve Galerkin procedure and the Kalman

®ltering technique. The Karhunen±Lo�eve Galerkin

procedure reduces the heat conduction equation to a

minimal set of ordinary di�erential equations, and by

applying the Kalman ®ltering technique to these or-

dinary di�erential equations, a set of equations for the

recursive estimation of the unknown wall heat ¯ux is

obtained. This method is shown to yield accurate es-

timates recursively at a decent requirement of com-

puter time.
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